Math 10A
Quiz 7; Tuesday, 7/24/2018
Time: 3 PM
Instructor: Roy Zhao
Name:

Circle True or False. (1 point for correct answer, 0 if incorrect)

1. TRUE False The recurrence relation $a_{n}=2 a_{n-1}+3 a_{n-2}+n$ has constant coefficients.

Solution: The coefficients of the a_{i} are $1,2,3$ which are numbers or constants.
2. TRUE False The recurrence relation $a_{n}=n^{2} a_{n-2}$ is linear.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) For all three parts, consider the recurrence relation $a_{n}=(4-n) a_{n-1}+a_{n-2}^{2}$ with $a_{0}=0, a_{1}=1$.
(a) (3 points) Calculate a_{2}, a_{3}, and a_{4}. Show your work.

Solution: $a_{2}=(4-2) a_{1}+a_{0}^{2}=2 \cdot 1+0^{2}=2 . a_{3}=(4-3) a_{2}+a_{1}^{2}=2+1^{2}=3$. $a_{4}=(4-4) a_{3}+a_{2}^{2}=2^{2}=4$.
(b) (2 points) Find the order and determine whether it is homogeneous, linear and/or has constant coefficients. Justify all your answers.

Solution: It has order 2 because the furthest back we go is a_{n-2}. It is homogeneous because there are no terms other than the a_{i} and their coefficients. It is not linear because a_{n-2} is squared. It does not have constant coefficients because of the coefficient $4-n$.
(c) (5 points) Verify that $a_{n}=n$ is the solution to this recurrence problem.

Solution: We need to plug in the initial conditions first to see if they work. They do because $a_{0}=0$ and $a_{1}=1$.
Now we plug it into the relation to get $L H S=n$ and
RHS $=(4-n)(n-1)+(n-2)^{2}=4 n-4-n^{2}+n+n^{2}-4 n+4=n=L H S$.

